Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pain Manag ; 13(3): 171-184, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36866658

RESUMO

Aim: The Combining Mechanisms for Better Outcomes randomized controlled trial assessed the effectiveness of various spinal cord stimulation (SCS) modalities for chronic pain. Specifically, combination therapy (simultaneous use of customized sub-perception field and paresthesia-based SCS) versus monotherapy (paresthesia-based SCS) was evaluated. Methods: Participants were prospectively enrolled (key inclusion criterion: chronic pain for ≥6 months). Primary end point was the proportion with ≥50% pain reduction without increased opioids at the 3 month follow-up. Patients were followed for 2 years. Results: The primary end point was met (n = 89; p < 0.0001) in 88% of patients in the combination-therapy arm (n = 36/41) and 71% in the monotherapy arm (n = 34/48). Responder rates at 1 and 2 years (with available SCS modalities) were 84% and 85%, respectively. Sustained functional outcomes improvement was observed out to 2 years. Conclusion: SCS-based combination therapy can improve outcomes in patients with chronic pain. Clinical Trial Registration: NCT03689920 (ClinicalTrials.gov), Combining Mechanisms for Better Outcomes (COMBO).


Spinal cord stimulation (SCS) is a device-based therapy for chronic pain that delivers electrical impulses to the spinal cord, disrupting pain signals to the brain. Pain relief can be achieved using different SCS techniques that use or do not use paresthesia (stimulation that produces a tingling sensation). These approaches affect patients in different ways, suggesting that different biological processes are involved in enabling pain relief. Research also suggests that better long-term results occur when patients can choose the therapy that is best for their own needs. This clinical study compared pain relief and other functional activities in those receiving combination therapy (simultaneous use of SCS that does and does not produce tingling sensation) against those receiving monotherapy (only SCS therapy producing tingling sensation) for 3 months. In the study, 88% of those receiving combination therapy and 71% with monotherapy alone reported a 50% (or greater) decrease in overall pain (the 'responder rate') without an increased dose of opioid drugs at 3 months after the start of therapy. This responder rate was found to be 84% at 1 year and 85% at 2 years (with all SCS therapy options available). Analysis of functional activities or disability showed that patients improved from 'severely disabled' at study start to 'moderately disabled' after 2 years, indicating that effective long-term (2 year) improvement can be achieved using SCS-based combination therapy for chronic pain.


Assuntos
Dor Crônica , Estimulação da Medula Espinal , Humanos , Dor Crônica/terapia , Parestesia , Terapia Combinada , Resultado do Tratamento , Medula Espinal
2.
Neuromodulation ; 25(1): 94-102, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35041592

RESUMO

OBJECTIVES: Subperception spinal cord stimulation (SCS) is described mostly utilizing waveforms that require high energy. However, the necessity of these waveforms for effective subperception has not been established. We aimed to explore whether effective subperception pain relief can be achieved using frequencies below 1 kHz. MATERIALS AND METHODS: Thirty chronic pain patients implanted with SCS were enrolled as part of a multicenter, real-world, consecutive, observational case series. An effective stimulation location was determined using a novel electric field shape designed to preferentially modulate dorsal horn elements. Subsequently, programs at lower frequencies (600, 400, 200, 100, 50, and 10 Hz) were provided with pulse-width and amplitude adjusted to optimize response. RESULTS: All tested frequencies (1 kHz down to 10 Hz) provided effective subperception relief, yielding a mean of 66-72% reduction in back, leg, and overall pain. It was found that to maintain analgesia, as frequency was decreased, the electrical or "neural" dose had to be adjusted according to parameter relationships described herein. With the reduction of frequency, we observed a net reduction of charge-per-second, which enabled energy savings of 74% (200 Hz) and 97% (10 Hz) relative to 1 kHz. Furthermore, pain reduction was sustained out to one year, with 85% of patients reporting a preference for frequencies of 400 Hz or below. CONCLUSIONS: We have derived an electric field configuration and, along with previous learnings in the kHz range, a set of neural dosing parameter relationships (10-10,000 Hz), which enable the expansion of effective subperception SCS to low frequency and achieve major energy savings.


Assuntos
Dor Crônica , Estimulação da Medula Espinal , Dor Crônica/terapia , Humanos , Manejo da Dor , Medição da Dor , Medula Espinal , Resultado do Tratamento
3.
Lancet Neurol ; 19(6): 491-501, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32470421

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus is an established therapeutic option for managing motor symptoms of Parkinson's disease. We conducted a double-blind, sham-controlled, randomised controlled trial to assess subthalamic nucleus DBS, with a novel multiple independent contact current-controlled (MICC) device, in patients with Parkinson's disease. METHODS: This trial took place at 23 implanting centres in the USA. Key inclusion criteria were age between 22 and 75 years, a diagnosis of idiopathic Parkinson's disease with over 5 years of motor symptoms, and stable use of anti-parkinsonian medications for 28 days before consent. Patients who passed screening criteria were implanted with the DBS device bilaterally in the subthalamic nucleus. Patients were randomly assigned in a 3:1 ratio to receive either active therapeutic stimulation settings (active group) or subtherapeutic stimulation settings (control group) for the 3-month blinded period. Randomisation took place with a computer-generated data capture system using a pre-generated randomisation table, stratified by site with random permuted blocks. During the 3-month blinded period, both patients and the assessors were masked to the treatment group while the unmasked programmer was responsible for programming and optimisation of device settings. The primary outcome was the difference in mean change from baseline visit to 3 months post-randomisation between the active and control groups in the mean number of waking hours per day with good symptom control and no troublesome dyskinesias, with no increase in anti-parkinsonian medications. Upon completion of the blinded phase, all patients received active treatment in the open-label period for up to 5 years. Primary and secondary outcomes were analysed by intention to treat. All patients who provided informed consent were included in the safety analysis. The open-label phase is ongoing with no new enrolment, and current findings are based on the prespecified interim analysis of the first 160 randomly assigned patients. The study is registered with ClinicalTrials.gov, NCT01839396. FINDINGS: Between May 17, 2013, and Nov 30, 2017, 313 patients were enrolled across 23 sites. Of these 313 patients, 196 (63%) received the DBS implant and 191 (61%) were randomly assigned. Of the 160 patients included in the interim analysis, 121 (76%) were randomly assigned to the active group and 39 (24%) to the control group. The difference in mean change from the baseline visit (post-implant) to 3 months post-randomisation in increased ON time without troublesome dyskinesias between the active and control groups was 3·03 h (SD 4·52, 95% CI 1·3-4·7; p<0·0001). 26 serious adverse events in 20 (13%) patients occurred during the 3-month blinded period. Of these, 18 events were reported in the active group and 8 in the control group. One death was reported among the 196 patients before randomisation, which was unrelated to the procedure, device, or stimulation. INTERPRETATION: This double-blind, sham-controlled, randomised controlled trial provides class I evidence of the safety and clinical efficacy of subthalamic nucleus DBS with a novel MICC device for the treatment of motor symptoms of Parkinson's disease. Future trials are needed to investigate potential benefits of producing a more defined current field using MICC technology, and its effect on clinical outcomes. FUNDING: Boston Scientific.


Assuntos
Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Núcleo Subtalâmico/metabolismo , Adulto , Idoso , Método Duplo-Cego , Discinesias/terapia , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Resultado do Tratamento
4.
Neuromodulation ; 23(1): 102-108, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31265205

RESUMO

OBJECTIVE: The WHISPER randomized controlled trial (RCT) evaluates safety and clinical effectiveness of subperception spinal cord stimulation (SCS) at ≤1.2 kHz in subjects previously implanted with an SCS system for treatment of chronic, neuropathic pain. METHODS: WHISPER is a prospective, multicenter RCT with a crossover design sponsored by Boston Scientific, Marlborough, MA (ClinicalTrials.gov: NCT02314000). Eligible subjects were randomized (N = 140) to receive subperception or supraperception for three months and then crossed over to receive the alternative. Upon completion of crossover period, subjects who preferred subperception were followed up to one year. Overall pain, quality-of-life, and other outcomes were collected in the study. The primary endpoint was the overall pain responder rate (≥50% improvement from baseline) with no increase in medications. Secondary endpoints consisted of pain scores, physical disability, quality of life, and treatment preference. RESULTS: The study met its primary endpoint and demonstrated noninferiority between supraperception and subperception in a prespecified cohort of 70 randomized subjects (Interim Analysis). Thirty-nine percent of subjects with subperception settings and 29% with supraperception settings had a greater than or equal to 50% reduction in their overall pain scores with no increase in average daily medication at three-months post-activation as compared with baseline. Further assessment of all participating study subjects (N = 140) revealed similar results. Subjects were previously implanted 3.8 ± 2 years and had a disability score (Oswestry Disability Index) of 70.2 ± 11.4 at study start. Of the randomized subjects that completed the End of Period 2 Visit, 93 (66%) preferred subperception SCS and their mean overall pain reduced from 7.3 ± 1.1 (N = 89) at baseline to 4.0 ± 2.1 (N = 80) at 12-months post-activation. Post hoc analysis also demonstrated that multiple options provide superior outcomes, as supported by a 74% increase in the responder rate when subjects could choose their most effective option (47%) compared with supraperception alone (27%). DISCUSSION: Subperception SCS at ≤1.2 kHz is safe and effective in subjects with extreme physical disability and previously implanted for chronic pain. Further, by providing study participants with different waveform options, increased pain relief was achieved.


Assuntos
Dor Crônica/diagnóstico , Dor Crônica/terapia , Neuroestimuladores Implantáveis , Percepção da Dor/fisiologia , Estimulação da Medula Espinal/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos Cross-Over , Feminino , Humanos , Neuroestimuladores Implantáveis/tendências , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estimulação da Medula Espinal/tendências , Resultado do Tratamento
6.
Pain Med ; 18(8): 1534-1548, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28108641

RESUMO

BACKGROUND: The aim of this study was to determine whether spinal cord stimulation (SCS) using 3D neural targeting provided sustained overall and low back pain relief in a broad routine clinical practice population. STUDY DESIGN AND METHODS: This was a multicenter, open-label observational study with an observational arm and retrospective analysis of a matched cohort. After IPG implantation, programming was done using a patient-specific, model-based algorithm to adjust for lead position (3D neural targeting) or previous generation software (traditional). Demographics, medical histories, SCS parameters, pain locations, pain intensities, disabilities, and safety data were collected for all patients. RESULTS: A total of 213 patients using 3D neural targeting were included, with a trial-to-implant ratio of 86%. Patients used seven different lead configurations, with 62% receiving 24 to 32 contacts, and a broad range of stimulation parameters utilizing a mean of 14.3 (±6.1) contacts. At 24 months postimplant, pain intensity decreased significantly from baseline (ΔNRS = 4.2, N = 169, P < 0.0001) and even more in in the severe pain subgroup (ΔNRS = 5.3, N = 91, P < 0.0001). Axial low back pain also decreased significantly from baseline to 24 months (ΔNRS = 4.1, N = 70, P < 0.0001, on the overall cohort and ΔNRS = 5.6, N = 38, on the severe subgroup). Matched cohort comparison with 213 patients treated with traditional SCS at the same centers showed overall pain responder rates of 51% (traditional SCS) and 74% (neural targeting SCS) and axial low back pain responder rates of 41% and 71% in the traditional SCS and neural targeting SCS cohorts, respectively. Lastly, complications occurred in a total of 33 of the 213 patients, with a 1.6% lead replacement rate and a 1.6% explant rate. CONCLUSIONS: Our results suggest that 3D neural targeting SCS and its associated hardware flexibility provide effective treatment for both chronic leg and chronic axial low back pain that is significantly superior to traditional SCS.


Assuntos
Algoritmos , Imageamento Tridimensional/métodos , Dor Lombar/terapia , Estimulação da Medula Espinal/métodos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
Lancet Neurol ; 14(7): 693-701, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26027940

RESUMO

BACKGROUND: High-frequency deep brain stimulation (DBS) with a single electrical source is effective for motor symptom relief in patients with Parkinson's disease. We postulated that a multiple-source, constant-current device that permits well defined distribution of current would lead to motor improvement in patients with Parkinson's disease. METHODS: We did a prospective, multicentre, non-randomised, open-label intervention study of an implantable DBS device (the VANTAGE study) at six specialist DBS centres at universities in six European countries. Patients were judged eligible if they were aged 21-75 years, had been diagnosed with bilateral idiopathic Parkinson's disease with motor symptoms for more than 5 years, had a Hoehn and Yahr score of 2 or greater, and had a Unified Parkinson's disease rating scale part III (UPDRS III) score in the medication-off state of more than 30, which improved by 33% or more after a levodopa challenge. Participants underwent bilateral implantation in the subthalamic nucleus of a multiple-source, constant-current, eight-contact, rechargeable DBS system, and were assessed 12, 26, and 52 weeks after implantation. The primary endpoint was the mean change in UPDRS III scores (assessed by site investigators who were aware of the treatment assignment) from baseline (medication-off state) to 26 weeks after first lead implantation (stimulation-on, medication-off state). This study is registered with ClinicalTrials.gov, number NCT01221948. FINDINGS: Of 53 patients enrolled in the study, 40 received a bilateral implant in the subthalamic nucleus and their data contributed to the primary endpoint analysis. Improvement was noted in the UPDRS III motor score 6 months after first lead implantation (mean 13·5 [SD 6·8], 95% CI 11·3-15·7) compared with baseline (37·4 [8·9], 34·5-40·2), with a mean difference of 23·8 (SD 10·6; 95% CI 20·3-27·3; p<0·0001). One patient died of pneumonia 24 weeks after implantation, which was judged to be unrelated to the procedure. 125 adverse events were reported, the most frequent of which were dystonia, speech disorder, and apathy. 18 serious adverse events were recorded, three of which were attributed to the device or procedure (one case each of infection, migration, and respiratory depression). All serious adverse events resolved without residual effects and stimulation remained on during the study. INTERPRETATION: The multiple-source, constant-current, eight-contact DBS system suppressed motor symptoms effectively in patients with Parkinson's disease, with an acceptable safety profile. Future trials are needed to investigate systematically the potential benefits of this system on postoperative outcome and its side-effects. FUNDING: Boston Scientific.


Assuntos
Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Eletrodos Implantados , Doença de Parkinson/diagnóstico , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento
8.
Neurol Res ; 26(4): 381-7, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15198863

RESUMO

The purpose of this study is to re-examine the probable directive effect of the distal stump of a severed peripheral nerve on regenerating axons. Forssman postulated the existence of such a directive influence and Cajal interpreted it as chemotactic in nature. This view was subsequently refuted by Weiss and Taylor. In our study the proximal stumps of transected rodent sciatic nerve were inserted into the single inlet end of a Y-shaped autogenous inferior vena cava graft. Into one limb of the double outlet end, namely the common iliac nerve bifurcation, the distal stump of the same sciatic nerve was inserted, while the counter limb was ligated in one group, left open in the second group, inserted with a segment of autogenous tendon in the third, and grafted with a segment of autogenous nerve in the fourth group. Both outlets were left unoccupied in yet another group as the control. The vena cava conduit was prepared so that a 1.5 cm gap existed between the proximal stumps of the sciatic nerve and the distal sciatic nerve stumps and the tendon grafts respectively. The grafted sciatic nerves were explored and biopsied after 12 weeks. The direction of nerve tissue regeneration in each group was analyzed histologically. Predilection of the regenerating nerve fibers toward the distal stumps was observed in each of the test groups. These results indicate the existence of a guiding influence at the distal stump toward the regeneration nerve fibers.


Assuntos
Axônios/fisiologia , Degeneração Neural/cirurgia , Regeneração Nervosa/fisiologia , Doenças do Sistema Nervoso Periférico/cirurgia , Animais , Axônios/patologia , Veia Ilíaca/fisiologia , Veia Ilíaca/transplante , Masculino , Doenças do Sistema Nervoso Periférico/patologia , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/fisiologia , Nervo Isquiático/transplante , Tendões/transplante , Transplante Autólogo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...